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Abstract— A computation-aware motion estimation algorithm
is proposed in this paper. Its goal is to find the best block match-
ing results in a computation-limited and computation-variant
environment. Our new features are one-pass flow and adaptive
search strategies. The prior scheme allocates more computation
to the macroblock with the highest distortion in the entire frame
step by step. This implies that random access of macroblocks is
inevitable, and the search pattern must be determined in advance.
The random access flow requires a huge size of memory for
all macroblocks to store the up-to-date minimum distortions,
best motion vectors, and searching steps. On the contrary, the
one-pass flow can not only significantly reduce the memory size
but also effectively use the context information of neighboring
macroblocks to achieve faster convergence and better quality.
Moreover, to improve video quality when computation resource
is still sufficient, the search strategy is allowed to adaptively
change from diamond search to three step search, and then to
full search. Last but not least, traditional block matching speed-
up methods are combined to provide much better computation-
distortion curves.

I. INTRODUCTION

Motion estimation (ME) is the heart of video encoders to re-
move temporal redundancy within video sequences. The block
matching algorithm (BMA) is adopted by all of the existing
video coding standards. Full search block matching algorithm
(FSBMA) produces the best video quality but demands the
most computation. Many fast BMAs, such as three step search
(TSS) [1] and diamond search (DS) [2], have been proposed
to speed up the FSBMA with acceptable loss of video quality
or with sacrifice of simplicity and regularity.

Usually, ME is implemented with a hardware accelerator.
The rapid improvements in processors and fast BMAs make
the software encoder a feasible solution, too. However, when
the encoder has to support a wide range of applications (e.g.
QCIF (176�144) and CIF (352�288), 15 frames/s (fps) and
30fps), traditional BMAs will face two problems. First, a
traditional BMA stops only when subsequent search points
are all examined, and the searching process of a frame cannot
be interrupted when the allowed time interval is passed,
so real-time constraints may be violated. Second, once the
BMA procedure is finished, it cannot be extended when extra
computation is still available, so better video quality cannot
be achieved.

Recently, the computation-aware (CA) concept is more and
more important. In software implementations, processors may

have to support video coding of different frame rates, frame
sizes, and search ranges. In hardware implementations, even
if the frame rate, frame size, and search range have been
clearly determined, the computation resource (e.g. operating
frequency) may still be adjusted according to the battery
power for portable devices. The goal of CA BMAs is to find
the best block matching results in a computation-limited and
computation-variant environment.

The authors of [3] are pioneers of CA BMAs. They con-
tributed a novel scheme, which allocates more computation
to the macroblocks (MBs) with the highest distortion in the
entire frame step by step, as shown in the Fig. 2(d) of [3].
The main concept is that the larger the initial distortion, the
more likely the distortion can be significantly reduced, and
thus the more computation should be allocated. It is very
simple and effective. Nevertheless, there are three problems
in their scheme. First, random access of MBs is inevitable,
requiring a huge size of memory for all MBs to store the up-
to-date minimum distortions, best motion vectors (MVs), and
searching steps. The advantage of MV predictors cannot be
applied. For example, the predictive diamond search (PDS) [4]
outperforms DS in both speed and quality. Second, the search
pattern must be determined in advance. The advantage of
adaptive search strategy cannot be applied, either. For instance,
PDS is better in small motion cases, but TSS is better in
large motion cases. The third problem is the poor hardware
feasibility since it was intended for software. The distortion
sorting operations can be easily implemented as hash tables
or lists in software, but they are too expensive in hardware.
The random access flow and enormous memory size are also
harmful for hardware.

In this paper, a one-pass CA BMA with adaptive search
strategy is presented. The ME is done MB by MB to solve
the mentioned problems. The rest of this paper is organized as
follows. In Section II, motion analysis is reported. In Section
III, proposed algorithm is described. Simulation results are
shown in Section IV. Finally, Section V gives a conclusion.

II. MOTION ANALYSIS

In this section, motion analysis is done in four aspects, as
described in the following subsections. Four QCIF 30fps stan-
dard video sequences, Foreman, Silent, Stefan, and Weather,
will be used in the statistics with search range as [-16,+15].
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Fig. 1. Statistics of motion for Stefan; (a) MVs; (b) MV prediction errors.

Foreman and Stefan are videos with large motion, while Silent
and Weather are videos with small motion.

A. Motion Vector Predictor

MV predictors exploit the spatial correlation of neighboring
MBs. Figure 1(a) and 1(b) show the distribution of MVs and
that of MV prediction errors, respectively. FSBMA and the
medium prediction from the left, top, and top right MBs are
considered in the statistics. The distribution of MV prediction
errors is much more concentrated around the origin than that
of MVs, and the peak value at the origin increases from 24%
to 59%. Starting from MV predictors makes PDS significantly
better than DS in convergence speed and video quality.

Supplementary advantage of MV predictors is to support
the rate-distortion optimized mode decision [5], known as
Lagrangian method. Not only the distortion but also the
MV costs are jointly considered in the mode decision. It is
reported that 1dB PSNR gain can be achieved. However, in our
experiments, we only use sum of absolute differences (SAD)
as the matching criterion for generality because MV costs are
dependent on entropy coding and quantization parameters.

B. Different Search Patterns

Different search patterns have different merits and thus
should be combined into one CA BMA. Figure 2 compares
FSBMA, TSS, and PDS. Among all frames, FSBMA gives the
best quality (motion compensated PSNR). On average, PDS
is better than TSS. However, when the camera pans very fast,
TSS is better than PDS. The results are quite reasonable. When
the motion field is small and regular, MV predictor works well,
and the diamond pattern can quickly find a good match. As
for TSS, the first step search points are dispersed, making final
results tend to be trapped in local minima. On the contrary,
when the motion field is large and complex, MV predictors do
not work well, and the diamond pattern moves slowly toward
the best MVs with a high probability of being trapped in
local minima. In this case, TSS first glances the entire search
area and has better chances to focus on the vicinity of global
minimum.

C. PDS versus FSBMA

When the allocated computation for an MB has not been
used up, a CA BMA will continue. However, if the global min-
imum distortion has been reached, searching more candidates
is a waste. Therefore, there should be some detection to check

Stefan QCIF 30Hz [-16, +15]
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Fig. 2. Comparison of different search patterns.

TABLE I

PERCENTAGES OF IDENTICAL MVS BETWEEN PDS AND FSBMA.

Sequence MVD�0 MVD�1 MVD�2 MVD�3

Foreman 97.41 94.17 79.84 80.27
Silent 99.51 97.66 92.24 91.30
Stefan 97.11 91.49 80.55 79.87
Weather 99.96 99.31 90.44 96.56

MV difference=MVD=�MVx-MVPx�+�MVy-MVPy�
MV=(MVx,MVy), MV predictor=MVP=(MVPx,MVPy)

if the optimal MV is reached for early termination of an MB.
Thus, the saved computation can be utilized for later MBs.
Table I lists the conditional probabilities of identical MVs
between PDS and FSBMA. The smaller the distance from MV
predictor to the final MV, the more likely the global distortion
minimum is reached. Therefore, the MV differences (MVDs)
defined in Table I can be used to skip BMA operations after
PDS.

D. TSS versus FSBMA

Table II lists the conditional probabilities of identical MVs
between TSS and FSBMA. After the first step search, if the
best MV is the origin, it is very possible that the optimal MV
will be found. Hence, the best MV right after the first step
search can be used to stop the BMA operations after TSS.

E. Summary

The motion analysis is summarized as follows.
� MV predictors can achieve faster speed and better quality.
� PDS is suitable for small and regular motion fields.
� TSS is suitable for large and complex motion fields.
� PDS tends to reach the global minimum distortion when

the MV predictor is close to the final MV.
� TSS tends to reach the global minimum distortion when

the best MV of the first step is the origin.
TABLE II

PERCENTAGES OF IDENTICAL MVS BETWEEN TSS AND FSBMA.

Sequence MV1st==0 MV1st!=0

Foreman 92.76 7.24
Silent 99.17 0.83
Stefan 93.97 6.03
Weather 99.72 0.28

MV1st: best MV after 1st step search
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Fig. 3. Proposed adaptive search strategy.

III. PROPOSED ALGORITHM

In this section, our one-pass CA BMA will be proposed in
four viewpoints as the following subsections.

A. Adaptive Search Strategy

Figure 3 illustrates our adaptive search strategy. First, PDS
is selected as the initial search pattern for an MB. Second,
when the PDS ends with available computation left for current
MB, the search pattern is switched to TSS. Finally, FSBMA
is adopted if TSS is finished with extra computation resource
left.

In general, PDS is better than TSS in speed and quality,
except for scenes with large and complex motion. In addition,
CA DS and CA TSS performs better than CA FSBMA in the
computation-distortion (C-D) plots, as stated in [3]. When the
BMA is relatively abundant in computation resource, FSBMA
still can improve the results. Based on the above reasons, we
combine the three search strategies in this way.

As the analysis of Section II summarizes, detection of global
minimum is employed. If the final MV of PDS is close to the
MV predictor, TSS will not continue. If the best MV of the
first step in TSS is the origin, FSBMA will not proceed.

B. Computation Allocation

In [3], the computation pool for the entire frame is de-
termined with the constraints of video smoothness and the
computation economy. However, for real-time bidirectional
communication applications in which low latency is required,
ME must be finished in time for every frame, and the frame
computation pool must not exceed the reciprocal of frame rate
(e.g. 1/15 sec for 15fps videos). In this paper, we focus on the
MB-level computation allocation. The frame computation pool
is taken as a given parameter.

Figure 4 is our computation allocation program. The new
concept is dividing the computation resource into a base
layer (BL) and an enhancement layer (EL). The BL guar-
antees the least computation for each MB. The EL allows
each MB to receive additional computation according to the
MB-level adjustment and early stop criteria. As shown in
Fig. 4, the target search points per MB (MB Tar SPts) and
that in BL (MB Tar SPts BL) are user-defined. Afterwards,
the frame target search points (FM Tar SPts) and that in
BL (FM Tar SPts BL) can be obtained from multiplying

User definition
MB_Tar_SPts

MB_Tar_SPts_BL

Frame level computation allocation
FM_Tar_SPts = MB_Tar_SPts* TotalMB

FM_Tar_SPts_BL= MB_Tar_SPts_BL* TotalMB

FM_Tar_SPts_EL= FM_Tar_SPts- FM_Tar_SPts_BL

Macroblock level computation allocation

MB_Alloc_SPts = MB_Tar_SPts_BL+ (Left_FM_Tar_SPts_EL/ LeftMB) * (InitSAD / AvgMinSAD )

AvgMinSAD= AccMinSAD / DoneMB

Fig. 4. Proposed computation allocation.

Frame layer computation allocation

Loop MBs

Initial block matching (MV=0) and find InitSAD

MB layer computation allocation
Block matching motion estimation

Adaptive search strategy (PDS, TSS, FSBMA)

Terminate whenMB_Actual_SPts >= MB_Alloc_SPts

Terminate when quasi-optimal MV is found

Update AccMinSAD , DoneMB, LeftMB, and Left_FM_Tar_SPts_EL

Initialize AccMinSAD , DoneMB, LeftMB, and Left_FM_Tar_SPts_EL

Fig. 5. Macroblock procedure.

MB Tar SPts and MB Tar SPts BL, respectively, with total
number of MBs in one frame (TotalMB). The frame target
search points in EL (FM Tar SPts EL) is the result of sub-
tracting FM Tar SPts BL from FM Tar SPts.

At the MB-level in Fig. 4, the concept of allocating more re-
source to MBs with larger distortions is adopted. The average
minimum SAD of previous MBs (AvgMinSAD) is obtained
as the accumulated minimum SAD (AccMinSAD) divided
by the number of processed MBs (DoneMB). The allocated
search points for an MB (MB Alloc SPts) is MB Tar SPts BL
plus the EL part, which is a product of two items. The
first item denotes the future average search points per MB
in EL, and is the left available computation pool of EL
(Left FM Tar SPts EL) divided by the number of MBs that
have not been processed (LeftMB). The second item denotes
the ratio of initial distortion of current MB (InitSAD) to
AvgMinSAD.

C. Macroblock Procedure

Figure 5 shows the macroblock procedure. The one-pass
flow denotes that BMA is processed for MBs one at a time.
Before entering the loop of MBs, frame level computation
allocation and variable initialization are required. Inside the
loop, the first step is to compute the SAD at the origin to
find InitSAD for MB layer computation allocation. Then,
adaptive search strategy determines the next search points.
As long as the number of actual searched points reaches
MB Alloc SPts, or the quasi-optimal MV (detection of global
minimum distortion) is found, the BMA is terminated, and
some variables are updated for the next MB.

D. Combination with Traditional Speed-up Methods

For each search point, partial distortion elimination (PDE)
is applied to eliminate redundant SAD computation. Besides,
1/2-subsampling is also adopted.
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Fig. 6. Computation-distortion curves.

IV. SIMULATION RESULTS

Figure 6 shows the C-D curves of the proposed algorithm
and others in [3]. CA DS, CA TSS, CA 1DFS, and CA FS are
abbreviated from CA DS, CA TSS, CA one dimensional full
search, and CA FSBMA, respectively. Many sequences were
tested, but only Coastguard, Foreman, Stefan, and Table Tennis
are shown due to the limited space and similar trends of C-D
curves. The C-D performance of the proposed algorithm is sig-
nificantly better than those of others. The average actually used
computation of our algorithm cannot exceed a certain value
for each sequence because our CA BMA early terminates
when detecting that all MBs have reached the optimal MVs.

Stefan QCIF 30Hz [-16, +15]
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Fig. 7. Capability of proposed computation control.

Therefore, further increasing MB Tar SPts will not increase
the actual search points. Furthermore, the best video quality
of our CA BMA is only 0.1-0.2dB lower than that of CA FS,
and is better than those of remaining CA BMAs. However, this
cannot be completely represented by Figure 6 because CA FS
reaches the best quality with many more search points.

Figure 7 shows the capability of the proposed computation
control. The number of actual search points is never larger
than that of target search points, which meets the real-time
constraints. When the computation resource is little, the avail-
able computation will be exhausted. When the computation
resource is abundant, the resource may not run out due to the
detection of global minimum distortion.

In fact, if PDE and 1/2-subsampling are applied to [3], our
algorithm cannot win so much, and even a small part of the
CA DS C-D curve may move to the upper left side of the
proposed curve. The information of entire frame is indeed
good for computation allocation. However, only our one-pass
method can be benefited from Lagrangian mode decision,
which enhances a lot of quality. Our strength also includes
high hardware feasibility and much less memory requirement.

V. CONCLUSION

We presented a computation-aware motion estimation. The
main idea is to convert the processing flow from random
access to one-pass for hardware feasibility. Moreover, motion
vector predictors and adaptive search strategy can thus be
utilized for faster speed and better quality. Detection of global
minimum distortion is also proposed to early stop the unnec-
essary computation. Simulation results show that the provided
computation-distortion performance is relatively better.
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